The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis.
نویسندگان
چکیده
A fundamental aspect of multicellular development is the patterning of distinct cell types in appropriate locations. In this review, the molecular genetic control of cell-type pattern formation in the root epidermis of Arabidopsis thaliana is summarized. This developmental system represents a simple and genetically tractable example of plant cell patterning. The distribution of the two epidermal cell types, root-hair cells and non-hair cells, are generated by a combination of positional signalling and lateral inhibition mechanisms. In addition, recent evidence suggests that reinforcing mechanisms are used to ensure that the initial cell fate choice is adopted in a robust manner.
منابع مشابه
Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملThe MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis.
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription facto...
متن کاملA Feedback Mechanism Controlling SCRAMBLED Receptor Accumulation and Cell-Type Pattern in Arabidopsis
Cellular pattern formation in the root epidermis of Arabidopsis occurs in a position-dependent manner, generating root-hair (H) cells contacting two underlying cortical cells and nonhair (N) cells contacting one cortical cell. SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase (LRR-RLK), mediates this process through its effect on a downstream transcription factor regulatory network. A...
متن کاملA Gene Regulatory Network for Root Epidermis Cell Differentiation in Arabidopsis
The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epider...
متن کاملA Mutual Support Mechanism through Intercellular Movement of CAPRICE and GLABRA3 Can Pattern the Arabidopsis Root Epidermis
The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 60 5 شماره
صفحات -
تاریخ انتشار 2009